
LEGO Pong
Level 3 – Python At Play

Content created by Grace Bennett, Teri Dawkins and Natasha Parbhakar

Introduction

Pong is one of the earliest arcade video games,
originally released in 1972 by Atari. It is a table tennis
game featuring simple two-dimensional graphics.
Players control paddles on each side of the screen,
which they use to hit a ball back and forth.

Task
LEGO Pong Game

In this project, you will use the Raspberry Pi BUILD
HAT, a LEGO Technic motor encoder and wheel,
and the python turtle library, to make a simple
game controller that you can use to play Pong.

Process
LEGO Pong

• Use LEGO Spike motor encoders
• React to motor encoder movement
• Make your PONG screen
• Move the ball
• Control the paddle
• Code paddle collisions

What you will need
LEGO Pong
• A Raspberry Pi

• A Raspberry Pi Build HAT

• At least 1 Lego Technic motor

• Assortment of LEGO®, including wheels (we used a selection from the LEGO® Education
SPIKE™ Prime kit)

• A small breadboard (optional)

• A buzzer (optional)

• Some breadboard jumper leads (optional)

• A 7.5V power supply with a barrel jack (optional). You can use an official Raspberry Pi power
supply for this project, as the motor encoders will not be using any power

Before you begin…
Before you start, you’ll need to have set up your Raspberry Pi Computer and attached the Build HAT.

Mount your Raspberry Pi on the LEGO Maker
Plate using M2 bolts and nuts, making sure the
Raspberry Pi is on the side without the ‘edge’.

Mounting the Raspberry Pi this way enables easy
access to the ports and SD card.

Line up the Build HAT with the Raspberry Pi,
ensuring you can see the This way up label. Make

sure all GPIO pins are covered by the HAT and
press down firmly.

Before you begin…
You should now power up your Raspberry Pi using the 7.5V barrel jack on the Build HAT, which will allow you to

use the motors.

If you need more information about getting started with the Raspberry Pi, click here.

Once the Raspberry Pi has been booted, open
the Raspberry Pi Configuration tool by clicking

on the Raspberry Menu button and then
selecting “Preferences” and then “Raspberry Pi

Configuration”.

Click on the “interfaces” tab and adjust the Serial
settings as shown :

https://d.docs.live.net/187c7d964d1f464b/Documents/School%20of%20Coding/Resources/CAIR%20for%20Youth/Introduction%20to%20Raspberry%20Pi.pptx

Before you begin…
You will also need to install the buildhat python library by following these instructions:

Step 1
Using the LEGO Spike motor encoders

Motor encoders can not only rotate, they
can also accurately detect how many

degrees they have been rotated.

The LEGO® Spike™ motors all have
encoders. If you look at the rotating disk

part of the motor, you will see a mark
shaped like a lollipop that can be lined

up with the 0 mark on the white body of
the motor itself. This is the encoder set

to zero degrees and any angular
movement of the motor shaft can be

measured relative to this point.

How motor encoders work

Step 2
Using the Lego Spike motor encoders

Connect a monitor, keyboard, and mouse to your Raspberry Pi device.

Lastly, connect the power; either through the Build HAT barrel jack or the USB-C
port on the Raspberry Pi.

Connect your Build HAT to your Raspberry Pi with the printed logo facing up,
making sure that you have properly covered all the pins.

Step 3
Using the LEGO spike motor encoders

Connect a motor to port A on the Build HAT

Step 4
Using the LEGO spike motor encoders

Attach a large wheel to the motor using four connector pegs. Turn the wheel so that the
lollipop mark is in line with zero.

Step 5
Using the LEGO Spike motor encoders

Open Thonny from the Raspberry Pi Programming menu and click on the Shell box at
the bottom of the window.

First, import the Build HAT library.

Press Enter.

Then, create a motor object that tells
Python the motor is connected to port A.

Type:

Press Enter (there will be a slight delay!)

Step 6
Using the LEGO Spike motor encoders

Now, you can ask the motor to report its
absolute position. This will always be

between -180 and 180.

Depending on how well you positioned
the motor at the start, you should get a

value close to 0.

Move the motor and type the line a
second time, and see how the value

changes.

You can also keep track of the motor’s
relative position. This is how far it has

moved from the time the programme
starts, so it will increase or decrease by 360

for every turn of the wheel.

Move the motor around and check its
absolute and relative positions, so that you

understand how the values change.

Step 7
React to motor encoder movement

Make a new file called game_controller.py

In the main Thonny window above the
shell you can use the commands you

already know to find the absolute
position of the motor. Then, in a while

True: loop you can print the value of the
position.

To use the LEGO® Technic™ motors as a controller for a game, you’ll need to be able to
constantly read their absolute positions.

Step 8
React to motor encoder movement

Delete the while True loop from
your programme and create this
simple function that prints the

absolute position of the motor. You
will also need to add another import

line to use the pause() function.

You should see that your program continually prints the position of the motor. If you
rotate the motor, these values should change.

There is a better way of doing this though. You only need to read the motor position if it
is moved.

Step 9
React to motor encoder movement

Now set this function to run when the motor’s encoder is moved:

Run your code and you should see the values printed out in the shell change when the
motor is moved.

Step 10
Make your pong screen

Turtle is a drawing and animation library - first, create a window where the game will be
played.

Open a new file in Thonny and add
the following code to import the

Turtle, time, and Build HAT libraries,
and then set up a screen. Run the file
and you should see a black window

with the title “PONG” open. You don’t
need to include the # comments.

Make a new file called pong.py

Step 11
Make your pong screen

The Turtle library also has a useful way of
setting the coordinates for a screen area.

Add this line to your programme:

This creates a rectangular window 400
pixels wide and 340 high, with 0 being in

the centre.

Step 12
Make your pong screen

Now, you need to update your game area, to see the paddle and ball.

Run your code and a black
window should appear.

Add a game loop to the
bottom of your code, and call

the update() method.

Next, you can make a ball by using a Turtle that is set to
be a white circle. The ball should start in the middle of
the screen, and shouldn’t draw a line when it moves.

Above your while True loop, add the following code:

Step 13
Make your pong screen

Next, you can set up a paddle in the same way. It will be a green rectangle and
positioned on the far left of the screen.

Run your code and you should see your ball
and paddle.

Step 14
Move the ball

The ball is going to bounce around the screen, so two variables are needed to keep track
of its speed in both the x and y directions. These numbers can be larger to make the

game harder, or smaller to make the game easier.

You can check where a Turtle is by using turtle.xcor() and turtle.ycor()
to find the x and y coordinates, respectively.

So to make the ball move, you can combine the position and speed.

Add the
following code

to your
programme:

Step 15
Move the ball

Run the programme and see what happens!

The ball should move
diagonally upwards towards
the top right corner of the

game area… and then keep on
going! If you want your game to

be fast and challenging, you
can increase the speed_x and

speed_y values to make the ball
move more quickly.

Step 16
Move the ball

The ball should bounce off the top wall rather than disappear off the screen. To do this,
the speed can be reversed, making the ball travel in the opposite direction, if its y position

is greater than 160.

Add the following code into your game loop and
run it.

Run your code again, and the ball
should bounce off the top of the

screen, but disappear off the right of
the screen.

Step 17
Move the ball

In the same way that the code checks the upper y position of the ball, to make it bounce,
it can check the right x position and the lower y position, in your game loop.

Add these checks on the ball’s position.

The ball should now bounce
around the screen and fly off
the left edge. Next, you will

control your paddle to reflect
the ball back from the left

edge.

Step 18
Control the paddle

The LEGO® Spike™ motor is going to be used to control the position of the paddle but
you don’t want to be able to make full turns.

A simple way to limit the motion of the wheel is to add a LEGO® element to prevent the
wheel turning through a complete rotation.

Line up the encoder marks on
your motor using the wheel, like

before. Insert a peg or axle as
close to level with the markers as

possible.

Step 19
Control the paddle

Add a line to create the motor_left object
after the import line.

Now a new variable is needed to keep track
of the location of the paddle. This will be

called pos_left and set to 0.

Step 20
Control the paddle

Create a function for the paddle that will
run when the motor encoder moves.

Note that it uses a global variable so that
it can change the value of the pos_left

variable.

Now add a single line that will use that
function each time the motor is moved. It

can be just before your while loop.

Then, add a line to the while True loop to
update the paddle object on the screen to

the new position.

Step 20
Control the paddle

Run your code and then turn the wheel on your motor encoder. You should see your
paddle moving up and down the screen.

What your code should look like…

Step 21
Paddle Collisions

The game is nearly complete – but first, you need to add some extra collision detection
that covers the ball hitting the paddle.

Within the while, True loop, check if the ball’s x position is within the horizontal area
covered by the paddle. Also use an and to check the ball’s y position is in the vertical line

in which the paddle moves.

paddle_left.sety(pos_left)
 if (ball.xcor() < -180 and ball.xcor() > -190) and (ball.ycor() < paddle_left.ycor() + 20 and ball.ycor() > paddle_left.ycor() - 20):
 ball.setx(-180)
 ball.speed_x *= -1

Try the program out. You should be able to bounce the ball off your paddle and play a
solo game of ‘squash’!

Step 22
Paddle Collisions

Now you have a way of preventing the ball from disappearing off-screen, it’s time to
think about what happens if you fail to make a save.

For now, let’s just reset the ball back to the start.

Add this code within the while True loop:

Step 23
Setting up the second paddle

Once you’re happy with the various settings, it’s time to add in the second paddle.

Using what you’ve created for the left-hand paddle as a starting point, add a second
paddle on the right-hand side of the game area.

First of all, connect a second LEGO® Technic™
motor to the Build HAT (port B) and set it up in

the programme.

Step 24
Setting up the second paddle

You can copy and paste your code for setting up your left paddle and change the name
and values for your right paddle.

Create your right paddle.

Step 25
Setting up the second paddle

Add a variable for the right paddle position, a function for the paddle, and the line to call
the function when the right motor is moved.

Step 26
Setting up the second paddle

Add a line to update the paddle on the screen to the while True loop:

Currently, the ball will bounce off the right-hand wall. Modify the lines of your program
that make that happen so that the ball is instead reset to the centre.

Change the condition for the ball’s xcor so that it resets.

Step 27
Setting up the second paddle

Now add a similar condition for the right paddle as you did with the left, to handle
collisions.

if (ball.xcor() < -180 and ball.xcor() > -190) and (ball.ycor() < paddle_left.ycor() + 20 and ball.ycor() > paddle_left.ycor() - 20):
 ball.setx(-180)
 ball.speed_x *= -1

if (ball.xcor() > 180 and ball.xcor() < 190) and (ball.ycor() < paddle_right.ycor() + 20 and ball.ycor() > paddle_right.ycor() - 20):
 ball.setx(180)
 ball.speed_x *= -1

You should now be able to enjoy a basic two-player game of Pong!

Conclusion
Learning outcomes

✔ Learn how to read the degrees of rotation from LEGO Technic motors.
✔ Learn to draw and move Turtle graphics using LEGO Technic motors.
✔ Learn to detect collisions between graphics using x and y coordinates.

If you are interested in ways you might improve your project, find more
about how you can do that here.

https://projects.raspberrypi.org/en/projects/lego-game-controller/7

Congratulations!
You have completed the project

